

Lumen Maintenance IESNA LM-80-2008

Kevin Dowling, PhD
Chairman, Testing Procedures SSL Committee

Oct. 30, 2008

WHY LM-80?

- We need to better determine true lifetimes of LED products
- Standards are needed to provide a consistent_{an} d common language for manufacturers and customers
- · There is no commonly accepted criteria for lifetime

The Beginnings

- ASSIST at the Lighting Research Center
 - ASSIST program
 - Narendran et al began looking at lifetime issues in 2000-2001
 - Current packages, 5mm, had very poor long term performance
 - ASSIST program began developing guidelines and methods for determining lumen maintenance.
 - ASSIST Recommends: LED Life Testing, Vol 1-6,
 Lighting Research Center, RPI, Troy NY 2005.

Needed for Energy Star

- Chromaticity
- Luminous Flux
- Definitions
- Lumen Maintenance

LM-80 Contents

- Scope
- References
- Definitions
- Ambient and Physical Conditions
- Electrical and Thermal Conditions
- Test and Measurement Procedures
- Lumen Maintenance Testing Method for LED Light Sources
- Test Report

Scope

- This document provides the methods of the measurement of lumen maintenance of source including sources including LED packages, arrays and modules only
- This approved method does not provide guidance or make any recommendations regarding predictive estimations or extrapolation for lumen maintenance beyond the limits of the lumen maintenance determined from actual measurement

Definitions

- Measurement Units
- LED Light Source
- Lumen Maintenance
 - Luminous flux remaining output (typically expressed as a percentage of the max output) at any selected elapsed operating time.
 - LED Light Source Failure
 - Rated Lumen Maintenance Life (L_{70} = time to 70% LM)
 - Case Temperature

Ambient and Physical Conditions

- 4.1 General
 - Relatively clean environment
- 4.2 LED Unit Marking
 - Marking individual units
- 4.3 Sample Selection
 - Representative sampling to be reported

Ambient and Physical Conditions

- 4.4 Environmental Conditions
 - Vibration lamps should not be subjected to excessive vibration and shock
 - Temperature and Humidity
 - Three case temperatures 55, 85C and one picked by the manufacturer. Additional temperatures can be tested.
 - Airflow minimized
 - Operating Orientation and Spacing
 - As specified by the manufacturer

Electrical and Thermal Conditions

- 5.1 Input Voltage and Current ripple held to 2%
- 5.2 Line Voltage Waveshape Within 3%
- 5.3 Input Current Regulation regulated within 3%
- 5.4 Auxiliary Equipment including Drivers
 - Per manufacturers guidance
- 5.5 Case Temperature

Test & Measurement Procedures

- 6.1 Instrumentation
 - Elapsed time measured only when sources are energized
- 6.2 Photometry Measurement
 - In conformance with appropriate laboratory method under test. E.g. LM-79 or other. Recommended that measurements use a spectroradiometer to collect color data as well.
- 6.3 Photometry Measurement Temperature
 - 25C +/- 1C. Source shall cool to room temperature prior to measurement

Lumen Maintenance Lest Method

- 7.1 Testing Duration and Interval
 - At least 6000 hours with data collection at a minumum of every 1000 hours. 10000 hours preferred for improved predictive modeling.
- 7.2 Operating Cycle
 - Shall be driven at constant current
- 7.3 Recording Failures
 - Check for source failure through visual observation or automatic monitoring
- 7.4 Chromaticity
 - Measured and reported

Test Report

- Number of LED Light Sources tested
- 2. Description of LED light sources
- 3. Description of auxiliary equipment
- 4. Operating cycle
- 5. Ambient conditions including airflow, temperature & humidity
- 6. Test point temperature
- 7. Drive current
- 8. Initial luminous flux and forward voltage at current
- 9. Lumen maintenance data for each LED light source (median, std deviation, min, max LM values for all the LED light sources
- 10. Observations of LED light source failures including failure conditions and time of failure
- 11. LED light source monitoring interval
- 12. Photometric measurement uncertainty
- 13. Chromaticity shift reported over the measurement time

TM-21

- Extrapolation and Prediction additions
- In process and in committee

LM-80 Next Steps

Use LM-80 to gather significant amount of data to provide input into the prediction process and, eventually, fold prediction and extrapolation into LM-80

Further information requested from users and laboratories as LM-80 is used.

THANK YOU!

ENERGY STAR® Webinar: Requirements for Lumen Maintenance

Jeff McCullough, LC Pacific Northwest National Laboratory

Oct. 30, 2008

Agenda

- 1. In-situ Testing Requirement and ANSI/UL 1598/153
- 2. The Temperature Measurement Point (TMP)
- 3. Application of LM-80 test data
- 4. Example
- 5. Submission Requirements

In Situ Testing Requirement

- LM-80-2008 is a component (package, module or array) level test
- Lumen depreciation (Life) determined by in-situ temperature measurements of:
 - Package, Module or Array
 - Power Supply/Driver
- Testing may be conducted at the same time as UL 1598/153
- Tests conducted by Nationally Recognized Testing Laboratories (NRTLs), recognized as qualified by OSHA

Approved Testing Laboratories

DOE will accept UL 1598 or UL 153 testing and certification from UL, UL signatories or the following NRTLs:

- Canadian Standards Association (CSA);
- Intertek Testing Services NA, Inc. (ITSNA);
- MET Laboratories, Inc. (MET);
- NSF International (NSF);
- SGS U.S. Testing Company, Inc. (SGSUS);
- TUV America, Inc. (TUVAM);
- TUV Product Services GmbH (TUVPSG);
- TUV Rheinland of North America, Inc. (TUV);
- Underwriters Laboratories Inc.(UL); and
- Wyle Laboratories, Inc. (WL).

Temperature Measurement Point (TMP)

- Manufacturer designated TMP correlating to LM-80 test report or power supply warranty
 - Module/Array
 - Solder Joint Temperature T_s
 - Case Temperature T_c
 - Board Temperature T_b
 - Power Supply
 - Case Temperature T_c
 - Could also be T_b for integral Power Supplies

UL 1598 Environments

UL 1598 Environments

Luminaira Tunas	Mounting Orientation		
Luminaire Types	Horizontal	Vertical	
Surface			
Surface	Section 19.10	Section 19.11	
Surface-mounted under-cabinet	Section 19.12		
Suspended	No apparatus required except if in situ mounting is ≤ 4" from the surface in which case mount to Section 19.10 defined apparatus		
Freestanding	No apparatus required		
Recessed			
Non-IC	Section 19.13	Section 19.13 except without insulation	
IC	Section 19.15	Section 19.15	

UL 1598 Test Apparatuses

Actual LM-80 Test Data

 $I_{\rm f} = 250 {\rm mA}$

<u>'</u> = 230 11174				
Operating Hours (hr)	Relative Light Output (%)			
0	100.0			
1000	102.4			
2000	101.1			
3000	100.6			
4000	100.5			
5000	100.3			
6000	99.8			
7000	99.3			

 $I_f = 350 mA$

Operating Hours (hr)	Relative Light Output (%)	
0	100.0	
1000	101.0	
2000	98.8	
3000	97.5	
4000	96.5	
5000	95.5	
6000	94.2	
7000	93.2	

Linear vs. Exponential Data

Lumen Depreciation "Passing" Criteria

The luminaire **PASSES** the Lumen Depreciation requirements if:

- The LM-80 test report for the package, array or module demonstrates lumen maintenance of:
 - ≥ 91.8% (indoor residential)
 - ≥ 94.1% (outdoor residential and all commercial)
- Measured during the in-situ temperature measurement test (UL1598/153), at the hottest TMP_{I FD}, evaluated at ≥ 6,000 hours.
- The drive current measured in the fixture is less than or equal to the drive current specified in the LM-80 test report.

IESNA LM-80 Test Report

Model XYZ Package

Application of LM-80 to ENERGY STAR

 $I_{c} = 250 \text{mA}$

<u>.ī</u> =3 9 1117 t				
Operating Hours (hr)	Relative Light Output (%)			
0	100.0			
1000	102.4			
2000	101.1			
3000	100.6			
4000	100.5			
5000	100.3			
6000				
7000	99.3			

 $I_f = 350 mA$

Operating Hours (hr)	Relative Light Output (%)	
0	100.0	
1000	101.0	
2000	98.8	
3000	97.5	
4000	96.5	
5000	95.5	
6000		
7000	93.2	

Application of LM-80 to ENERGY STAR

SCENARIO 1

The in situ measured $\mathsf{TMP}_{\mathsf{LED}}$ is greater than the highest case temperature collected according to LM-80 procedures. In this case the product cannot be qualified as there is no test data to substantiate manufacturer claims.

SCENARIO 2

The in situ measured TMP_{LED} is less than the lowest case temperature measured collected according to LM-80 procedures. In this case the product must use the data from the lowest case temperature measured according to LM-80 procedures.

SCENARIO 3

The in situ measured $\mathsf{TMP}_{\mathsf{LED}}$ is bounded above and below by case temperature data collected according to LM-80 procedures. In this case linear interpolation shall be used to determine the lumen depreciation (maintenance) for the proposed product.

Example

Example Interpolation

LM-80 test data for XYZ Package

	Case Temperature (T _c)		
Time (hours)	25°C	55°C	85°C
0	100%	100%	100%
	•••	•••	
6,000	99%	95%	90%

In situ measured TMP (TMP $_{LED}$) = 67°C

$$L_{TMP} = 95 + \left(\frac{90 - 95}{85 - 55}\right) (67 - 55)$$

:.
$$L_{TMP} = 93.0\%$$

Submission Requirements

Applicant submits the following information to ENERGY STAR:

- LM-80 test report (data table and chart) showing relative light output over time at various case temperatures (t_c) and at a drive current greater than or equal to the measured current of the LED package, array or module used in the luminaire.
- In situ temperature measurement test report with the measured temperature of the hottest LED (TMP_{LED}).
- Diagram/picture of the TMP_{LED} location with an arrow indicating the thermocouple attachment point.

Questions?

Contact Information:

Jeff McCullough (509) 375-6317 jeff.mccullough@pnl.gov